
White Paper: Developing a Service Engine Component On the Web sun.com

Developing a Service
Engine Component

A Technical White Paper
May 2005

© 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, CA 95054 USA

All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this product or document may be reproduced in any
form by any means without prior written authorization of Sun and its licensors, if any. Third-party software,
including font technology, is copyrighted and licensed from Sun suppliers.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of
FAR 52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR
227.7202-3(a). DOCUMENTATION IS PROVIDED “AS IS" AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS HELD TO BE LEGALLY INVALID.

Sun Microsystems, Inc.

Table of Contents
Document Purpose...4
Intent..4
Background...4
JBI Artifacts and their relationships..5
Pre-requisites..5
Create a Service-Engine Component...6
Create Service Engine classes...6

Important Note..8
Class Diagram...11
Package Service Engine classes..12
Create a JBI Component Descriptor...12

Understanding the Descriptor...13
Package the JBI Component..13

Install a Service-Engine Component..14
Install the Component...14
Define Services for a Component...15
Create a Component Sub-Assembly..15
Understanding the Descriptor...16
Package the Sub-Assembly..16
Create a Component Service Assembly...17
Understanding the Descriptor...18
Package the Service Assembly..18
Deploy Services to a Component...19
Deploy the Service Assembly package..19
Testing the Service Engine Component..20
Preparation..20

Add a FileBinding Component..20
Create a new Sub-Assembly..20
Package the Sub-Assembly..21
Deploy new Services to the Binding Component...21

Test the Service Engine Component..21
Appendices..22
Appendix A – useful jbiadmin commands..22
Appendix B – Glossary...23
Appendix C – References...23

Sun Microsystems, Inc.

Chapter 1

Document Purpose

Intent
The intention of this guide is to provide a hands-on example of the construction and deployment of a Java
(TM) Business Integration (JBI) service engine component. The authors hope that this example will provide
an understanding of the various elements and artifacts, along with an appreciation of the effort and process
required to create a new service engine from scratch.

This guide is not intended to replace the documentation provided with the JBI Technology Preview
Release , nor is it an addendum to the JBI Specification [ref 1].

Background
Before embarking on this guide, the reader should have a working understanding of JBI in general, as well
as a view of the process involved and of the artifacts created when one develops a JBI component.

A JBI component can be thought of as a generic element of a JBI application, providing services and
exposing business logic. These components are generally split into two camps: binding components and
service engines. The first group is outside the scope of this document but can be considered to expose
specific transport technologies in the form of services. For example, a SOAP binding component will expose
services that are accessed by sending a SOAP XML message over HTTP(s).

The second group is the focus of this document and is usually used to expose pieces of business logic,
business processes, or data transformation as services. These types of component will likely be the primary
focus for bespoke development effort, based as they will be on existing services that may not be exposed
with standard interfaces.

Think of the process as having three main stages: development of the component code, installation of the
component in a JBI engine, and deployment of service definitions to that component.

• Development. The development phase is a fairly traditional Java coding exercise, with specific
interfaces being implemented and Java classes being created and packaged. The end result of
this phase is the core of a component—in this case, a service engine component.

• Installation. The installation phase requires the construction of an XML descriptor, which defines
the component's identity component and describes a number of the elements within the
component classes. The end result of this phase is a package (usually a JAR archive) containing
the compiled component and the descriptor XML document. This package is then installed in the
JBI engine.

• Deployment. The final phase, deployment, makes the installed component a usable JBI artifact.
This phase requires constructing a number of further XML documents, both to describe the
services provided and used by the installed component (usually called a subassembly) and to
define the package (again, this is usually a JAR archive generally known as the service
assembly) that will be deployed. The end result of this final phase will be a number of further
packages: one or more subassemblies packaged together into a single service assembly.

JBI Artifacts and Their Relationships

Prerequisites
Before embarking on this guide, the reader should have the following:

• A working knowledge of the JBI Specification [ref 1]
• Java programming experience
• An installed copy of the Sun Java System Application Server, version 8.1 (PE)
• An installed copy of the JBI Technology Preview Release .

Component Installation Package
(JAR archive)

Component Classes
(JAR archive)

Component Descriptor
 (jbi.xml)

Service Deployment Package
or Service Assembly

(ZIP archive)

Package Descriptor
 (jbi.xml)

Service Engine Sub-Assembly
(JAR archive)

Service Descriptor
 (servicelist.xml)

Binding Component Sub-Assembly
(JAR archive)

Service Descriptor
 (endpoint.xml)

Chapter 2

Create a Service Engine Component

A number of Java classes must be created to construct a component, each based on one or more
interfaces. This guide will show the absolute minimum amount of code required to build, install, and deploy
a service engine component; where appropriate, it will also give pointers about adding further functionality.
The reader should note that the end result of this section will not be a fully functional component but rather
enough of a component to allow the developer to understand the effort required to create a component.

Code snippets illustrate some of the code required.

The reader should use the example applications provided with the Technology Preview release as a
reference for constructing a fully operational component.

Create Service Engine Classes
Two external JAR archives are required in order to compile and build any classes created here:
• jbi.jar (found in <install_dir>/appserver)
• j2ee.jar (found in JDK lib dir or AppServer lib dir)

New Class Name Interfaces Implemented

TestBootstrap javax.jbi.component.Bootstrap

This class will be called by the JBI engine during component installation processes. Any application-specific
behavior that is needed at install or uninstall time can be added to this class.

Each interface method must be implemented, but no code is required within each method. In order to aid
debugging, however, it would be wise to produce log messages within each method, for example:

public void onInstall(){
System.out.println("Bootstrap instance installed.");
}

The method getExtensionMBeanName() can return a null reference without causing errors.

New Class Name Interfaces Implemented

TestServiceUnitManager javax.jbi.component.ServiceUnitManager

This class will be called by the JBI engine during service deployment processes. All the methods of this
class will be used to deal with service unit operations: start, stop, shutdown, init, and so on. Any
application-specific behavior that is needed at deploy or undeploy time can also be added to this class.

Each interface method must be implemented, but code is not required within all methods. In order to aid
debugging, however, it would be wise to produce log messages within each method, for example:

public void start(String serviceUnitName){
System.out.println("SUM instance told to start SU "+serviceUnitName+".");
}

Extend the constructor to:
• Accept a parameter of type javax.jbi.component.ComponentContext and store this as a member

variable.
• Use this variable to create another member variable of type

javax.jbi.management.ManagementMessageBuilder.

public TestServiceUnitMgr(ComponentContext compCtx) {
mContext = compCtx;
mBuildManagementMessage =
mContext.getManagementMessageFactory().newBuildManagementMessage();
}

For the deploy method:
• Create an object of type javax.jbi.management.ComponentMessageHolder and set attributes of

this object to indicate a successful deployment.
• Use the member variable of type javax.jbi.management.ManagementMessageBuilder to create

a management message via the buildComponentMessage method. Ensure that the management
message is returned from this method.

String retMsg = null;
try {
ComponentMessageHolder compMsgHolder =
new ComponentMessageHolder("STATUS_MSG");

compMsgHolder.setComponentName(mContext.getComponentName());
compMsgHolder.setTaskName("deploy");
compMsgHolder.setTaskResult("SUCCESS");

retMsg = mBuildManagementMessage.buildComponentMessage(compMsgHolder);
} catch(Exception e) {
...
}
return retMsg;

For the start method:
• The component must inform the JBI engine that it has an active endpoint.
• Create an object of type javax.xml.namespace.QName with values matching the service name and

URI that your component will provide.
• These values must match those values placed in the deployment descriptor for your component
• Create an object of type javax.jbi.servicedesc.EndpointReference via the

activateEndpoint method of the ComponentContext member variable captured in the previous
constructor.

• The final parameter value must reference the endpoint name placed in the deployment descriptor for
your component.

QName qn = new QName("http://www.payroll.org/payroll.wsdl","PayrollService");
try {
EndpointReference ref = mContext.activateEndpoint(qn, "SE_Endpoint");
} catch (JBIException JBIe) {
...
}

Important Note

Please note that the implementation suggested here is the bare minimum to enable a component to
function. The values for the activateEndpoint method should not be hard-coded but extracted from the
deployment package when it is deployed.

This is possible through the deploy method of the TestServiceUnitMgr, using the ServiceUnit
Path parameter. This parameter will contain the full path for the deployment descriptor XML document
jbi.xml, and this document can be read and parsed to extract the correct values.

The implication is that a more complex implementation is required to retrieve, store, and access these
values because the deploy and start methods are called at separate points in the component lifecycle.
The Technology Preview demo application provides an example of this kind of implementation..

New Class Name Interfaces Implemented

TestMsgReceiver Runnable

This class will be created not by the JBI engine but by the component class. As such, it is one way to
respond to messages rather than a vital part of the component. The class will act as the receiver for all
service messages from the JBI engine or Normalized Message Router (NMR).

Override the constructor to accept a parameter of type javax.jbi.messaging.DeliveryChannel.

Assign this parameter to a member variable.

public TestMsgReceiver(DeliveryChannel channel) {
this.mChannel = channel;
...
}

For the run method:
• Implement a loop that repeatedly calls the accept method of the DeliveryChannel variable. (The

return type of this call should contain an exchange, the basis of a message exchange; add some
debugging to interrogate the contents of this object.)

• Ensure that this loop checks a member variable to allow the loop to be ended.

public void run(){
...
mainLoop: while (this.mProcess) {
try {
this.mExchange = this.mChannel.accept(5000);

if (this.mExchange != null){
...
}
} catch (MessagingException me){
continue mainLoop;
}
}
...
}

Implement a stopProcessing method, which changes the variable checked by the loop in the run
method.

public synchronized void stopProcessing(){
...
this.mProcess = false;
}

New Class Name Interfaces Implemented

TestComponent javax.jbi.component.Component
javax.jbi.component.ComponentLifecycle

This class is the core of your component and will delegate the reception, processing, and returning of
messages.

The component interface provides the JBI engine with methods to access parts of the service engine, for
example, the ServiceUnitManager. The ComponentLifecycle interface allows the JBI engine to
control the service engine, with start, stop, and shutdown methods. It is these methods that are called
when one attempts to start or stop a component through the management tools.

Each interface method must be implemented, but code is not required within all methods. In order to aid
debugging, however, it would be wise to produce log messages within each method, for example:

public ComponentLifeCycle getLifeCycle(){
System.out.println("Component instance asked to provide a LifeCycle.");
return this;
}

The method getExtensionMBeanName() can return a null reference without causing errors.

For the init method:
• Store the ComponentContext parameter in a member variable.
• Use this variable to create another member variable of type TestServiceUnitManager.

public void init(ComponentContext compCtx){
if (compCtx != null){
this.mContext = compCtx;
this.mServiceUnitMgr = new TestServiceUnitMgr(compCtx);
}
...
}

For the getLifecycle method:
• Return a reference to this.

For the getServiceUnitManager method:
• Return a reference to the member variable of type TestServiceUnitManager.

For the start method:
• Retrieve a DeliveryChannel object from the ComponentContext variable.
• Create a new instance of TestMsgReceiver, passing in this DeliveryChannel object.
• Create a new Thread object based on the TestMsgReceiver object and start it.

try {
this.mChannel = this.mContext.getDeliveryChannel();

this.mMsgReceiver = new TestMsgReceiver(this.mChannel);
Thread recThrd = new Thread(this.mMsgReceiver);
recThrd.start();
} catch (MessagingException me) {
...
}

For the stop and shutdown methods
• Make a call to the stopProcessing method of the TestMsgReceiver member variable.

public void stop(){
...
this.mMsgReceiver.stopProcessing();
}

Class Diagram

javax.jbi.component
Bootstrap

javax.jbi.component
Component

javax.jbi.component
ComponentLifecycle

javax.jbi.component
ServiceUnitManager

javax.jbi.component
ComponentContext

TestBootstrap

TestComponent TestServiceUnitMgr

Runnable

TestMsgReceiver

Interface

Concrete Class

ImplementsAssociation

Key

Chapter 3

Package Service Engine Classes

Build a single JAR archive from all these classes, referencing any other required JARs.

Create a JBI Component Descriptor
Create a new XML document called jbi.xml (based on the schema jbi.xsd found in the
<install_dir>/schemas directory).

Place the jbi.xml file in a META-INF subdirectory.

Contents should be similar to the following:

<jbi version="1.0" xmlns='http://java.sun.com/xml/ns/jbi'
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'>
<component type="service-engine">
<identification>
<name>TestSeqEng</name>
<description>Description of your component.</description>
</identification>
<component-class-name description="[your component description]">
[your package].[your component class name]
</component-class-name>
<component-class-path>
<path-element>[your jar file path and name]</path-element>
</component-class-path>
<bootstrap-class-name>
[your package].[your bootstrap class name]
</bootstrap-class-name>
<bootstrap-class-path>
<path-element>[your jar file path and name]</path-element>
</bootstrap-class-path>
</component>
</jbi>

Understanding the Descriptor

The following table explains the most important elements of the jbi.xml document.

Element Description

jbi The root element, requiring the attribute version with a value of 1.0.

component The type attribute denotes whether the component will be a binding or
service engine. In this case, it is set to service engine.

identification This element block contains a unique name for thecomponent, along
with a textual description.

name All management tools and UIs will use this string to identify the
component, so this should be meaningful but not excessively long.

component-class-name This denotes the core class for the component, that is, the class that
implements the component interface. The value of this element should
be a fully qualified name of the component (for example,
com.sun.jbi.demo.TestComponent).

component-class-path This indicates the location of the class within the component
deployment package. This will usually indicate a JAR archive packaged
within the deployment package. Thus, the value of this element will
indicate the location within the deployment archive of the class (for
example, dist/JBIDemo.jar).

bootstrap-class-name This denotes the class to be used at installation time, that is, the class
that implements the Bootstrap interface. This must be the fully
qualified name of the class.

bootstrap-class-path This indicates the location of the class within the component
deployment package. This will usually denote a JAR archive within the
deployment package.

Package the JBI Component

Create a new JAR archive for your component and include both the JAR you created in the previous section
and the jbi.xml document.

The resulting JAR file should have contents like this:

META-INF/jbi.xml
[your classes' jar file path]/[your classes' jar file].jar

Chapter 4

Install a Service Engine Component

Install the Component

The component package can now be installed as a JBI component, either through the NetBeans GUI or the
jbiadmin command-line tool (see Appendix B for details).

Once the service engine package has been created, use the jbiadmin tool to install the component, using
the following command:

install-component [component jar]

Verify the installation with the jbiadmin command list-service-engines. This should produce output
similar to the following:

================================
List of Service Engines
================================
Name: TestSeqEng
State: Installed

Once installed, the component can then be started to begin polling for messages, with the following
command:

start-component [component name]

Verify this with the list-service-engines command again. The output should be similar to the
following:

================================
List of Service Engines
================================
Name: TestSeqEng
State: Started

You have now created and installed a service engine that will continually poll for messages.

Chapter 5

Define Services for a Component

Create a Component Subassembly
This step requires the creation of a new package for the component, which will contain details of the
services that the component provides; this is called a subassembly. This package will not be deployed
directly but will be used to create a superpackage or service assembly that will be deployed.

Create a new XML document named servicelist.xml (based on the schema servicelist.xsd found
in the <install_dir>/schemas directory).

<service-list xmlns="http://www.sun.com/ns/jbi/engines/sequencer/deploy/service-config">
<list-attributes>
<list-service>
<namespace-uri>http://www.examples.org/service.wsdl</namespace-uri>
<local-part>SE_TestService</local-part>
</list-service>
<endpoint-name>SE_Endpoint</endpoint-name>
<list-operation>
<namespace-uri>http://www.examples.org/service.wsdl</namespace-uri>
<local-part>DoTest</local-part>
</list-operation>
<list-mep>http://www.w3.org/2004/08/wsdl/in-only</list-mep>
</list-attributes>
<service>
<service-name>
 <namespace-uri>"http://timecard.com/service.wsdl"</namespace-uri>
 <local-part>Timecard</local-part>
</service-name>
<endpoint-name>endpoint</endpoint-name>
<service-id>first_service</service-id>
<description>This defines a Service called by the SE</description>
<operation>
 <namespace-uri>"http://operation.com/service.wsdl"</namespace-uri>
 <local-part>transform</local-part>
</operation>
<timeout>5000</timeout>
<mep>http://www.w3.org/2004/08/wsdl/in-out</mep>
</service>
</service-list>

Understanding the Descriptor
The following table explains the most important elements of the servicelist.xml document.

Element Description

service-list This is the root element.

list-attributes This section of the document describes the services that the component
provides.

list-service This section uniquely identifies the service.

local-part This element's value denotes the name of the service; it will be shown and
used both in management tools and within other descriptor files.

endpoint-name This element provides a unique name for the endpoint that this service
represents.

list-operation This element's value details the name of the operation that this service
represents.

local-part This element's value denotes the name of the operation; it will be shown and
used both in management tools and within other descriptor files.

service This section defines those services that may be called by the component .

service-name This section identifies the service that may be called.

local-part This element's value denotes the name of the service; it will be shown and
used both in management tools and within other descriptor files.

endpoint-name This element provides a unique name for the endpoint that this service
represents.

operation This element's value details the name of the operation that this service
represents.

Package the Subassembly
Create a new zip archive containing the servicelist.xml document created previously; make sure that
the document is within a subdirectory named META-INF.

The resulting zip file should have contents like this:

META-INF/servicelist.xml

Create a Component Service Assembly
This step will create another package, containing one or more subassemblies that will be deployed to the
JBI engine.

Create a new XML document named jbi.xml (based on the schema jbi.xsd found in the
<install_dir>/schemas directory), as in the example below.

Place the jbi.xml file in a META-INF subdirectory.

<jbi version="1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://java.sun.com/xml/ns/jbi">
<service-assembly>
<identification>
<name>JBIDemo_SA</name>
<description>Service Assembly for JBI Demo Component</description>
</identification>
<service-unit>
<identification>
<name>JBIDemoSE_SA</name>
<description>Service Engine Sub-Assembly for JBI Demo</description>
</identification>
<target>
<artifacts-zip>JBIDemoSE_SA.zip</artifacts-zip>
<component-name>TestSeqEng</component-name>
</target>
</service-unit>
</service-assembly>
</jbi>

Understanding the Descriptor
The following table explains the most important elements of the jbi.xml document.

Element Description

jbi The root element, requiring the attribute version with a value of 1.0.

service-assembly This is the main identifier for the type of package described by this file—in this
case, a service assembly.

identification This element block retains details of the service assembly as a whole or of
each subassembly, depending on its location in the document.

name This element is the identifying name for the service assembly or subassembly.
The value of this element will be the identifier used within all administration
tools (that is, to undeploy this service assembly).

description This is a textual description of the service assembly or subassembly that is
being identified (that is, that may be displayed in administrative applications).

service-unit This element block identifies a subassembly, the zip archive that contains its
service definitions, and the JBI component that it relates to (see also
<identification>). This block may be repeated for each subassembly
being deployed.

target This element block identifies the zip archive and component to which services
are being deployed.

artifacts-zip The value of this element contains the fully qualified name of the zip archive
containing subassembly service definitions.

component-name The value of this element contains the unique identifier of the component to
which this set of services are to be deployed.

Package the Service Assembly
Create a new zip archive containing the subassembly packages (zip files) you have built and the META-INF
subdirectory.

The resulting zip file should have contents like this:

META-INF/jbi.xml
[your sub-assembly].zip

Chapter 6

Deploy Services to a Component

Deploy the Service Assembly Package
Once the service assembly package has been created, the jbiadmin tool can be used to deploy the
package, using the following command:

deploy-service-assembly [service assembly.zip]

Verify the deployment with the jbiadmin command list-service-assemblies., which should produce
output similar to the following:

================================
List of Service Assemblies
================================
Name: JBIDemo_SA
Status: DEPLOYED

Chapter 7

Testing the Service Engine Component

Preparation
The following steps will provide the basis for testing a new component. This scenario is extremely simple
and will serve only to prove that the new service engine component has been properly installed and has
service deployed for it. For more complex or realistic examples, follow the Technology Preview examples
and demo.

In essence, an XML file will be read from a directory and passed to the service engine, which will write
entries to the application server log file showing that the file's contents were received.

Add a FileBinding Component

The default installation of the Technology Preview will provide a number of binding components that can be
reused for testing. In this case, a file-based binding component will be used (called SunFileBinding); this
will read a file from a given directory and pass the contents of that file to the service engine.

Because the component is already installed, a new service can be deployed to it, requiring only a new
service descriptor and subassembly. This subassembly can be added to the existing service assembly.

Create a New Subassembly

As before, you must create a new service decriptor file, either through the NetBeans IDE or by hand. This
file will be named endpoint.xml and conform to the endpoint.xsd schema. Again, this document
should be in a META-INF subdirectory.

This document will specify the location in which the filebinding component will look to read documents
and any services it expects to provide or call—in this case, the service defined for our service engine
component.

The values you enter into this document must match values entered into the component subassembly
created earlier. The JBI engine (or the normalized message router) will use these values to forward a
message from one component (SunFileBinding) to another (TestSeqEng).

The following diagram illustrates the relationships between elements of these two files:

SEVICELIST.XMLENDPOINT.XML

<endpoint-list>
 <endpoint>
 <service>
 <namespace-uri>http://www.abc.org/abc.wsdl</namespace-uri>
 <local-part>ABCService</local-part>
 </service>

<service-list>
 <list-attributes>
 <list-service>
 <namespace-uri>http://www.abc.org/abc.wsdl</namespace-uri>
 <local-part>ABCService</local-part>
 </list-service>

<endpoint-name>ftpEndpoint</endpoint-name>

<endpoint-role>consumer</endpoint-role>

<operation>
 <name>
 <namespace-uri>http://www.abc.org/abc.wsdl</namespace-uri>
 <local-part>inputxml</local-part>
 </name>
</operation>

 </endpoint>
</endpoint-list>

<endpoint-name>seqEndpoint</endpoint-name>

<list-operation>
 <namespace-uri>http://www.abc.org/abc.wsdl</namespace-uri>
 <local-part>inputxml</local-part>
</list-operation>

 </list-attributes>
</service-list>

SunFileBinding Sub-Assembly Descriptor TestSeqEng Sub-Assembly Descriptor

Package the Subassembly

Create a new zip archive containing the servicelist.xml document you created previously.

Deploy New Services to the Binding Component

The existing service assembly can now be extended to include the subassembly archive just created. In
addition, the jbi.xml descriptor must be extended to include details of the new subassembly.

The service assembly can then be redeployed (in fact, the existing service assembly will be undeployed and
the new service assembly deployed in its place).

Test the Service Engine Component
The following steps should exercise both the file binding component and the new test service engine, with
the contents of an XML document being passed to the service engine, which should output some debug
messages to show that the exchange has occurred.

1. Place a test file in a directory for the SunFileBinding component to read.
2. Check the application server log file.
3. Verify that a message has been passed from one component to the other.

Appendixes

Appendix A: Useful jbiadmin commands

Command Description

List-service-engines Show current state of all installed service engine
components.

list-binding-components Show current state of all installed binding
components.

install-component [component jar] Install a component from the given JAR archive
name.

uninstall-component [component name] Uninstall a component with the given name (see JBI
Component Descriptor section)

start-component [component name] Start a component with the given name.

stop-component [component name] Stop a component with the given name.

deploy-service-assembly [service-
assembly.zip]

Deploy a service assembly (or assembly unit) to the
JBI server.

undeploy-service-assembly [sa name] Undeploy a service assembly with the given name.

Appendix B: Glossary

Term Description

component Generic name for any JBI application element.

service engine A type of JBI component, primarily providing services such as
orchestration or transformation.

binding component A type of JBI component, primarily providing access to existing
applications, via protocols such as SOAP or JMS.

install The process by which a new component is delivered to the JBI
engine.

deploy The process by which the services provided by a component are
exposed to the JBI engine (see also service assembly).

package A logical grouping of elements to allow the installation or deployment
of JBI artifacts.

JBI component descriptor An XML document defining the identity and contents of a JBI
component or package.

service assembly A package of service definitions (see subassembly) provided to the
JBI engine at deployment time (see also deploy.)

assembly unit See service assembly.

subassembly A package containing an XML descriptor of the services provided by
or used by a specific component. See also service assembly.

service unit See subassembly.

Appendix C: References

Referenc
e

Referenced Item Version Date

1 Java Business Integration Specification Public Review Draft 0.75

